* 아르헨티나 */나의 이야기

수학이야기- 분수는 왜 생겼을까?

bernabe 2005. 8. 1. 20:29
 
수학이나 과학이야기만 나오면 모두들 머리 아파 하시니까
             음악 한곡 배경으로 깔았습니다.^^;*
몇해전 홍익대 수학과 박경미 교수가 중앙일보에 기고 했던
글 중에서 재미있는 글 하나 소개합니다.
 지금은 바야흐로 디지털 시대...
디지털 시대에 더 적합한 것은 '분수'보다는 '소수'라고 할 수 있다. 
바로 읽기만 하면 된다. 
그런데 아날로그 시계는 시침이나 분침 위치에 따라 시간을 따져봐야 한다. 
이 때 필요한 것이 분수적 사고다.
 수학사(史)에서도 분수는 소수보다 일찍 등장했다. 
고대 이집트 때 부터 이미 분수를 광범위하게 사용했는데 
주목할 만한 것은 분수를 분자가 1인 단위분수의 합으로 나타냈다는 점이다.
 인류 최초의 수학책인 [아메스의 파피루스]에는 '2/5 = 1/3 + 1/15'이나
'2/7 = 1/4 + 1/28'과 같이 분수를 단위분수의 합으로 나타낸 기록을 찾아
볼 수 있다.
 왜 이런 시도를 했을까? 
아마도 분배를 염두에 두었기 때문이 아닐까 추측할 수 있다. 
예를 들어 3개의 빵을 4명이 똑같이 나눠야 하는 상황인 3/4을 생각해보자. 
처음부터 3개를 4조각으로 나누려면 힘이 든다. 
그런데 일단 빵 2개를 절반으로 쪼개 4명이 각각 한 조각씩 나눠 갖고 
나머지 빵 한개는 4등분해 한조각씩 나눠 갖고 나머지 빵 한개는 
4등분해 한 조각씩 가지면 훨씬 쉽다. 
'3/4 = 1/2(2/4) + 1/4'이기 때문이다. 
단위 분수의 합을 이용하면 균등한 분배 상황을 간편하게 표현할 수 있다.
 잘 알려진 아라비안 나이트 이야기 하나. 
옛날 아라비아의 어떤 상인이 자기 재산인 낙타 17마리를 
큰아들은 1/2, 
둘째 아들은 1/3, 
셋째 아들은 1/9을 가지라고 유언하고 죽었다. 
문제는 17이 2,3,9로 나누어 떨어지지 않아 1/2, 1/3, 
1/9을 정수로 구할 수 없었다는 것. 
삼형제가 낙타를 놓고 싸움을 계속할 때 지나가던 노파가 
자기가 타고 있던 낙타 한마리를 보태줬다. 
낙타가 18마리가 되자 삼형제는 1/2인 9마리, 
1/3인 6마리, 
1/9인 2마리를 각각 가질 수 있었다. 
게다가 9마리, 6마리, 2마리의 합은 17마리이므로 
노파도 희사했던 자기 낙타를 다시 돌려받았다. 
모든 사람이 윈-윈하게된 비결은
'1/2 + 1/3 +1/9'이 1이 아니라 17/18이기 때문이다.